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Bound on Scattering Elements for Irregularly
Shaped Waveguides

KALMAN KALIKSTEIN

Abstmct-A lower bound is obtained on the phase shffts that char-

acterize the scattering of electromagnetic waves by obstacles fn an irregu-
larly shaped wavegukfe for wldcb the form funelion fs imprecisely known.
A mnnerfcaf example illustrates the method.

I. INTRODUCTION

BOUNDS, variational principles, and variational-

bound formulations for waveguide scattering given in

the literature [ 1]<4] are applicable only if the form func-

tion of the propagating mode is known precisely. Here a

bound is presented on the scattering parameters (phase

shifts) for an irregularly shaped waveguide where the form

function is not known analytically. The bound is not

stationary, in that the error (the difference between the

bound and the true value) is of the first order. A dielectric

right circular cylinder placed parallel to the axis of propa-

gation in a rectangular waveguide serves as an illustration

of the technique. Relatively close lower bounds on the

phase shifts are obtained with a simple trial function used

in place of the known form function of the TEIO mode.

Variational-bound scattering principles, in which the

error is of the second order (stationary) and of known

sign, have recently been formulated for quantum

mechanical problems containing imprecise information

about the target ground-state function [5]. Such formula-

tions can most probably be generalized and extended to

irregular waveguides since the form function of the propa-

gating mode is the analog of the ground-state function.

However, the variational-bound principles would entail

the evaluation of far more difficult expressions than ap-

pear in the bound considered here.

II. THEORY

In this section, we derive a lower bound on the phase

shift of an electromagnetic wave scattered by an obstacle

in an arbitrarily shaped waveguide for which precise in-

formation about the form function of the propagating

mode Z(x,y) is lacking. We def:ne an operator P such that

for the electric field intensity E(x,y,z)

Pi (X,~,Z) = ~(X,~)@X’,J+? (X’,~’,Z) do’ (1)

where do’ = dx’ c@’and where Z is normalized. P picks out

by ~ Fourier coefficient calculation the propagating mode
of E; similarly, the operator
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Q-l-p (2)

projects out the evanescent modes of ~. It follows from

Maxwell’s wave equation

–vx(vxi)+6(u/c)%=o (3)

that [4]

[ 1-P ‘+ HQQ(W:H)QQH-W ‘E=O
(4)

where q a, and c are the relative permittivity, the angular

frequency, and the speed of light, respectively. Also

H=T+V

T= – V2

v= Vv. +(1 –c)(@/c)*

w= (@/c)2. (5)

Let q be the phase shift determined from (4) and qp the

phase shift associated with the so-called static equation

P (H– W)Pip=O (6)

where

Pip = i?(x,y)fp (z).

It is shown [4] that q p represents a lower bound on the

exact phase shift

~>qp. (7)

Equation (6) can be written

[-d2/dz+&+ p- W] fp(z)=O (8)

where Q: is the square of the cutoff frequency of the

propagating mode

@=~Z[-(,2,,x2)-( ~2,~y2)]Zdu (9)

and where the average potential

~=~~v(x,~,z)~du (lo)

represents the effect of the obstacle weighted with the

square of the mode function over the guide’s cross section.
Equation (8) cannot be written down explicitly for an

irregular waveguide since Z is not known exactly.

Nqw, an expression B(z) can be constructed such that

B – V is at least of the first order and the condition
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B>F (11)

is satisfied. Also, it follows from the ~aylei@–Ritz princi-

ple that

U;t —U:>o (12)

(and stationary), where

@:,= J~.[-(a2,ax2)-(a2, ay2)]qda (13)

is the square of the trial cutoff frequency of the propagat-

ing mode, and ~ (x,y) is a normalized trial form function.

It follows then from the monotonicity theorem [4] that the

phase shift q B obtained from the differential equation

[-d2/dz%:+B-?’ v]j-B(z)=o (14)

satisfies the relation

~>qp>qB. (15)

Thus q B represents a first-order lower bound on the true

phase shift q.

From the Gramm determinant inequality and the

Schwartz inequality, Weinhold [6]~7] obtains a lower

bound on the expression ~$*A# dr, where ~ is a normal-

ized wave function, A is a positive definite operator, and

dr is a volume element. Since V is a negative definite

operator (we do not consider plasma obstacles for which

1> c), a lower bound – B on – ~ patterned after that of

Weinhold is

2!$1

*d ~~ a —----q

Fig. 1. A dielectric right circular cylinder in a rectangular

The following parameters have been chosen:

(@/c)’ =2(77/a)2

(b/a)= l/2

E=2

waveguide.

(19)

where a and b are the wide and narrow dimensions of the

waveguide. The cylinder with radius R = a/4 and with

axis centered at a/2 and b/2 extends from z = - d to

z = d, where d= a/2. This simple (artificial) example,

whose form function i?=J~(2/ ab) 1/2 sin (mr/ a) is of course

known, has been chosen in order to compare the quality

of the bound with known results. We use the normalized

trial function ~ instead of Z, where

~ =~y(30/ab)l’2x (a – x)/a2 (20)

J

where

/
S= Z.~da. (17)

The approach of the so-called overlap integral S toward

unit y is the criterion of accuracy of the trial function 21.

Although S is not known, the inequality (16) is valid when

S is replaced by a lower bound, the Eckart bound, on its

true value. A lower bound on S is given by

S2 > (@;c– 6J:t)/(@c – 4) (18)

where q ~ is the cutoff frequency of the first evanescent

mode. The cutoff frequencies u, and q= can be de-

termined experimentally. In case their experimental values

are not known, the expression (18) is sustained if UC and

Q~c are replaced by lower bounds to their true values.

III. NUMERICAL EXAMPLE

For irregular waveguides, the Rayleigh-Ritz principle
and other methods [8]–[9] serve as a tool for the de-

termination of the variational parameters contained in the

trial function.

A numerical example is presented by a dielectric right

circular cylinder located in a rectangular waveguide

parallel to the z axis of propagation, as shown in Fig. 1.

and where~~is a unit vector in they direction. Although ~

does not contain any variational parameters, it is a good

approximation to Z, From (13)

C&= 10/a2 (2’[)

while u: is, from (9), (m/ a)2. With @c= (277/ a)2, it follows

from (18) that

S2 >0.9956. (22)

One obtains from (16) and (18)

B= – 1.294( r/a)2. (23)

By the way, we can compare the bound B with the exact

value of V. From (10)

= – 1.3615( ~/a)2

where J, is a Bessel function and R = a/4.

The even q,B and odd qOBphase shifts corresponding to

(14) are
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q:= 13°34’

qe~=30”oo. (24)

The upper and lower bounds on the phase shifts obtained

by the quadratic Kato method [10] with the exact Z are

14°30< ‘qO<15°30’

31 °8’<q. <32018’.

IV. CONCLUSION

A formulation has been presented for determining

lower bounds on the phase shifts of dielectric obstacles in

irregular waveguides, Relatively close lower bounds have

been obtained with a simple trial function. This is to be

expected for this type of obstacle for the permittivity

value considered because the higher order evanescent

modes contribute little excess phase shift, Of course, the

bound may be improved by going to a better trial func-

tion with variational parameters, The extension to multi-

mode waveguides is immediate.
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Propagation of Magnetostatic Waves Along
Curved Ferrite Surfaces

NEERAJ C. SRIVASTAVA

Abstract-Ektronmgttetfc equations have been appropriately trans-
formed and solved in order to investigate the propagation of ntagnetustatic
waves in curved geometries. The reaufts have been utilised to study

magstetostatic propagation along the surface of a cylindrically curved slab
of ferrite in the asfmuthal direction. In the case of an unbacked- or a
metal-backed slab, it is found that the effeet of curvature is to sfightfy

reduce the phase as weff as the group velocity by a constant factor
throughout the frequency range of allowed modes. However, under favor-

able conditions, the presence of a dielectric layer between ferrite and metal
leads to a strong enhancement in the propagation constant. It is aJsofound
that an axially magnetized homogeneous ferrite eyfirufer cannot support
magttetostatic surface waves propagating along its curved srrrfaee in tfte
aaimuthal diiection.

I. INTRODUCTION

M AGNETOSTATIC wave propagation along curved

ferrite surfaces is an area of importance on account
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of its relevance to a variety of practical situations, e.g.,

magnetostatic surface wave resonant modes of a ferrite

slab with rounded edges [1], magnetic surface wave ring

interferometer [2] characterized by propagation along the

curved surface of a dielectric cylinder with ferrite sleeve,

projected magnetostatic waveguide bends [3], scattering of

electromagnetic waves by composite ferrite cylinders, etc.
While the effect of curvature on guided wave propagation

in hollow metallic [4], [5] and dielectric [6], [7] structures

has been investigated in the past, similar studies in the

case of ferntes are not available. In this paper, we have

investigated the effect of curvature on propagation char-

acteristics of magnetostatic surface waves in ferrites mag-

netized transverse to the direction of propagation. In

Section H, the electromagnetic equations have been ap-

propriately transformed and solved for the curved geome-

try. In Section III, the dispersion relation has been ob-

tained in the general case of magnetostatic wave propaga-

tion, in azimuthal direction, and in a cylindrically curved
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