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Bound on Scattering Elements for Irregularly
Shaped Waveguides

KALMAN KALIKSTEIN

Abstract—A lower bound is obtained on the phase shifts that char-
acterize the scattering of electromagnetic waves by obstacles in an irregu-
larly shaped waveguide for which the form function is imprecisely known.
A numerical example illustrates the method.

1. INTRODUCTION

OUNDS, variational principles, and variational-
bound formulations for waveguide scattering given in
the literature [1]-{4] are applicable only if the form func-
tion of the propagating mode is known precisely. Here a
bound is presented on the scattering parameters (phase
shifts) for an irregularly shaped waveguide where the form
function is not known analytically. The bound is not
stationary, in that the error (the difference between the
bound and the true value) is of the first order. A dielectric
right circular cylinder placed parallel to the axis of propa-
gation in a rectangular waveguide serves as an illustration
of the technique. Relatively close lower bounds on the
phase shifts are obtained with a simple trial function used
in place of the known form function of the TE,, mode.
Variational-bound scattering principles, in which the
error is of the second order (stationary) and of known
sign, have recently been formulated for quantum
mechanical problems containing imprecise information
about the target ground-state function [5]. Such formula-
tions can most probably be generalized and extended to
irregular waveguides since the form function of the propa-
gating mode is the analog of the ground-state function.
However, the variational-bound principles would entail
the evaluation of far more difficult expressions than ap-
pear in the bound considered here.

II. THEORY

In this section, we derive a lower bound on the phase
shift of an electromagnetic wave scattered by an obstacle
in an arbitrarily shaped waveguide for which precise in-
formation about the form function of the propagating
mode é(x,y) is lacking. We define an operator P such that
for the electric field intensity E(x,y,z)

PE (x,3,2)= é’(x,y)f?(x',y’)-ﬁ (x'.y',z)de (1)

where do’ = dx’ dy’ and where € is normalized. P picks out
by a Fourier coefficient calculation the propagating mode
of E; similarly, the operator
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Q=1-P (2)

projects out the evanescent modes of E. It follows from
Maxwell’s wave equation

~VX(VXE)+e(w/c)E=0 (3)
that [4]

1
Q(W—-H)Q
where ¢, », and ¢ are the relative permittivity, the angular
frequency, and the speed of light, respectively. Also

P|H+HQ QH—-WI{PE=0  (4)

V=VV-+(1-€)(w/c)?
W=(w/c)" (%)

Let  be the phase shift determined from (4) and 57 the
phase shift associated with the so-called static equation

P(H—W)PE?=0 (6)

where
PEP=2(x,p) f» (2).

It is shown [4] that n¥ represents a lower bound on the
exact phase shift

n>n’. (7
Equation (6) can be written
[-d*/dz+w2+V~ W] fp(2)=0 (8)

where w? is the square of the cutoff frequency of the

propagating mode

w3=fé’-[—(aZ/axZ)—(al/ayZ)]Eda 9)
and where the average potential
V= fé’- V(x,y,z)€ do (10)

represents the effect of the obstacle weighted with the
square of the mode function over the guide’s cross section.
Equation (8) cannot be written down explicitly for an
irregular waveguide since € is not known exactly.

Now, an expression B(z) can be constructed such that
B—V is at least of the first order and the condition
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B>V (11)

1s satisfied. Also, it follows from the Rayleigh-Ritz princi-
ple that

(12)

(and stationary), where

i=[&[ (%)~ (3%/)]Gdo  (13)
is the square of the trial cutoff frequency of the propagat-
ing mode, and ¢,(x,y) is a normalized trial form function.
It follows then from the monotonicity theorem [4] that the
phase shift n2 obtained from the differential equation

[—dz/dz2+w3,+B—W]fB(z)=0 (14)

satisfies the relation
n>n">n" (15)

Thus 12 represents a first-order lower bound on the true
phase shift 7.

From the Gramm determinant inequality and the
Schwartz inequality, Weinhold [6]-{7] obtains a lower
bound on the expression [y*A4y dr, where ¢ is a normal-
ized wave function, 4 is a positive definite operator, and
dr is a volume element. Since V is a negative definite
operator (we do not consider plasma obstacles for which
1>¢€), a lower bound — B on — V patterned after that of
Weinhold is

fz-(—V)ado>
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Fig. 1. A dielectric right circular cylinder in a rectangular waveguide.

The following parameters have been chosen:

(w/c)’=2(n/a)’

(b/a)=1/2

€=2 (19)

where a and b are the wide and narrow dimensions of the
waveguide. The cylinder with radius R=a/4 and with
axis centered at @/2 and b/2 extends from z=~d to
z=d, where d=a/2. This simple (artificial) example,
whose form function &=(2/ab)'/? sin (mx / a) is of course
known, has been chosen in order to compare the quality

of the bound with known results. We use the normalized
trial function ¢, instead of €, where

&=7 (30/ab)"*x(a—x)/a? (20)
{ngz'(— Ve, do—(l—SZ)l/Z[fgt.Iﬂé; d“‘(fgr‘Vado)le/z]z
=-B (16)

where
(17)

The approach of the so-called overlap integral S toward
unity is the criterion of accuracy of the trial function é,.
Although S is not known, the inequality (16) is valid when
S is replaced by a lower bound, the Eckart bound, on its
true value. A lower bound on S is given by

§2> (ol —f)/ (0}, — o7) (18)

where w,, is the cutoff frequency of the first evanescent
mode. The cutoff frequencies w, and w,, can be de-
termined experimentally. In case their experimental values
are not known, the expression (18) is sustained if w, and
w,, are replaced by lower bounds to their true values.

S=fz-é; do.

ITL.

For irregular waveguides, the Rayleigh-Ritz principle
and other methods [8]-[9] serve as a tool for the de-
termination of the variational parameters contained in the
trial function.

A numerical example is presented by a dielectric right
circular cylinder located in a rectangular waveguide
parallel to the z axis of propagation, as shown in Fig. 1.

NUMERICAL EXAMPLE

[e-(=v)e do

and where j is a unit vector in the y direction. Although ¢,
does not contain any variational parameters, it is a good
approximation to €, From (13)

w2=10/a? 21

while w? is, from (9), (7 / a)%. With w? =Q2n/a)?, it follows
from (18) that

S2>0.9956. (22)
One obtains from (16) and (18)
B=—1294(7/a)*. (23)

By the way, we can compare the bound B with the exact
value of V. From (10)

V= —2(%)2”(1’22 1+

J,(2nR/a)
(mR/ a)

= —1.3615(7/a)’

where J, is a Bessel function and R=a/4.
The even 72 and odd 52 phase shifts corresponding to
(14) are
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nZ=13°34

n.2=30°00". (24)
The upper and lower bounds on the phase shifts obtained
by the quadratic Kato method [10] with the exact € are

14°30' < 1, < 15°30

31°8' <7, <32°18".

1V. CoNcLUSION

A formulation has been presented for determining
lower bounds on the phase shifts of dielectric obstacles in
irregular waveguides. Relatively close lower bounds have
been obtained with a simple trial function. This is to be
expected for this type of obstacle for the permittivity
value considered because the higher order evanescent
modes contribute little excess phase shift. Of course, the
bound may be improved by going to a better trial func-
tion with variational parameters. The extension to multi-
mode waveguides is immediate.
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Propagation of Magnetostatic Waves Along
Curved Ferrite Surfaces

NEERAJ C. SRIVASTAVA

Abstract—Electromagnetic equations have been appropriately trans-
formed and solved in order to investigate the propagation of magnetostatic
waves in curved geometries, The results have been utilized to study
magnetostatic propagation along the surface of a cylindrically curved slab
of ferrite in the azimuthal direction. In the case of an unbacked- or a
metal-backed slab, it is found that the effect of curvature is to slightly
reduce the phase as well as the group velocity by a constant factor
throughout the frequency range of allowed modes. However, under favor-
able conditions, the presence of a dielectric layer between ferrite and metal
leads to a strong enhancement in the propagation constant. It is also found
that an axially magnetized homogeneous ferrite cylinder cannot support
magnetostatic surface waves propagating along its curved surface in the
azimuthal direction.

I. INTRODUCTION

M AGNETOSTATIC wave propagation along curved
ferrite surfaces is an area of importance on account
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of its relevance to a variety of practical situations, e.g.,
magnetostatic surface wave resonant modes of a ferrite
slab with rounded edges [1], magnetic surface wave ring
interferometer [2] characterized by propagation along the
curved surface of a dielectric cylinder with ferrite sleeve,
projected magnetostatic waveguide bends [3], scattering of
electromagnetic waves by composite ferrite cylinders, etc.
While the effect of curvature on guided wave propagation
in hollow metallic [4], [5] and dielectric [6], [7] structures
has been investigated in the past, similar studies in the
case of ferrites are not available. In this paper, we have
investigated the effect of curvature on propagation char-
acteristics of magnetostatic surface waves in ferrites mag-
netized transverse to the direction of propagation. In
Section II, the electromagnetic equations have been ap-
propriately transformed and solved for the curved geome-
try. In Section III, the dispersion relation has been ob-
tained in the general case of magnetostatic wave propaga-
tion, in azimuthal direction, and in a cylindrically curved
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